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Introduction 

• Particle-based models are used for simulating soft 
body dynamics 

 

• Soft body dynamics is a field of computer 
graphics that focuses on visually realistic physical 
simulations of the motion and properties of 
deformable objects (or soft bodies) 

 

• E.g. 
– Cloth simulation (Creating Garments) 

– Human tissue (Virtual Surgery) 

– Hair and Vegetation (Computer Games) 
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Introduction (contd.) 

• Issues 

 

– Usually, real-time execution is required 

 

– Realistic simulation requires complex models 
(i.e. large numbers of particles) 

 

– Complex models have high computational 
cost 

 

 

 

 



Page 5 

29 May, 2014   DC VIS - Distributed Computing, Visualization and Biomedical Engineering    www.mipro.hr 

Objectives 

• Research methods for accelerating particle-
based simulators 

 

• Parallelize the computation requires to 
simulate particle-based models 

 

• Run simulations on a graphics cluster 

 

• Assess performances 
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Mass-Spring Model 

• Particle-based model  

 

• Points of mass interconnected by 
springs 
– Structural springs 

– Shear springs 

– Bend springs 

 

• For modeling volume, the points 
of mass can be organized in a 
tetrahedron 
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Mass-Spring Model (contd.) 

• Behavior of mass-spring systems is dictated by Hooke’s Law 
of Elasticity 

𝑭𝒆𝒍 = −𝑘∆x 
• where k – constant of elasticity, Δx – elongation 

 

• Force formula for particles i and j 

𝑭𝑖,𝑗
𝑒𝑙 = 𝑘 ∙ 𝒙𝑖,𝑗 ∙ 1 −

𝑙

𝒙𝑖,𝑗
 

• where 𝒙𝑖,𝑗 = 𝒙𝑖 − 𝒙𝑗 and l is the rest length 

 

• Damping  

𝑭𝑖,𝑗
𝑑𝑎𝑚𝑝

= −𝛾𝒗𝑖,𝑗 

• where 𝒗𝑖,𝑗 = 𝒗𝑖 − 𝒗𝑗  
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Implicit Numeric Integration 

• The evolution of the system in time is obtained by integrating Newton’s 
equations of motion 

𝑭 = 𝑚𝒙  
 

• Implicit Euler integration 

 
Δ𝒙 = (𝒗𝑡 + Δ𝒗) ∙ ∆𝑡

∆𝒗 = 𝑀−1 ∙ 𝑭(𝒙𝒕 + ∆𝒙, 𝒗𝑡 + ∆𝒗) ∙ ∆𝑡
 

 
• Linearization 

𝑭 𝒙𝒕 + ∆𝒙, 𝒗𝑡 + ∆𝒗 = 𝑭 𝒙𝒕, 𝒗𝑡 +
𝜕𝑭

𝜕𝒙
∙ ∆𝒙 +

𝜕𝑭

𝜕𝒗
∙ ∆𝒗 

 

• Final discretization 

𝐼 − 𝑀−1 ∙
𝜕𝑭

𝜕𝒗

∙ ∆𝑡 −

𝜕𝑭

𝜕𝒙
∙ ∆𝑡

2 ∙ ∆𝒗 = 𝑀−1 ∙ 𝑭 𝒙𝒕, 𝒗𝑡 +
𝜕𝑭

𝜕𝒙
∙ 𝒗𝑡 ∙ ∆𝑡 ∙ ∆𝑡 
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Achieving Parallelization 

• Computation process for each particle is independent 
of other particles 

 

• Each particle can be handled by a different thread 

 

• Taking advantage of the power of the GPU (SIMD - 
Single Instruction Multiple Data) 

 

• OpenCL – newly emerging standard 
– Allows parallel programming of heterogeneous systems 

– Interoperability with OpenGL through Vertex Buffer Arrays 
(VBOs) 
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Achieving Parallelization (contd.) 

• Taking it further… 

 

• Dividing the model 
among more 
computers: GPU 
cluster 
– N computers – N 

patches 

– Assign each patch to 
one node  

– Synchronize common 
regions at each 
simulation step 
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Parallel Implicit Integration 

• Parallel Conjugate Gradient (Ax=B) 

– ViennaCL 
• Sparse Matrix-Vector Multiplication (SPMV) 

• Compressed Sparse Row (CSR) 

– A, IA, JA 

– IA, JA - precomputed 

 
 Parallel Global Matrix Update (A) 

 Each row handled by a different 
thread 

 Eg. – structure of A for a 4x4 grid of 
particles 
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Experiments – Parallel Matrix Update 

Nb. of 
particles 

Sequential time 
(s) 

Parallel time 
(s) 

256 0.193 0.000038 

1024 0.914 0.000038 

4096 4.57 0.000038 

16384 36 0.000038 

65536 164 0.000038 
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Experiments – Parallel Matrix Update (contd.) 
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Conclusions and Future Work 

• Conclusions 

– GPU – an efficient way to accelerate mass-spring 
models simulations 

– Performance can be further increased by 
distributed computing – GPU clusters 

– Efficient update method for the global matrix A 

 

• Future Work 

– Experiment on more performant GPU cluster 
architectures 



Thank you for your attention! 
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